lunes, 22 de julio de 2013

MATEMATICAS: Notas históricas y aplicaciones en la vida cotidiana

             
Extracto de Proyecto EDUMAT maestros: Matemáticas y su didáctica.
Autores (Juan D. Godino,Carmen Batanero, Vicenç Font, España, 2003)
La perspectiva histórica muestra claramente que las matemáticas son un conjunto de conocimientos en evolución continua y que en dicha evolución desempeña a menudo un papel de primer orden la necesidad de resolver determinados problemas prácticos (o internos a las propias matemáticas) y su interrelación con otros conocimientos.
Ejemplo:
Los orígenes de la estadística son muy antiguos, ya que se han encontrado pruebas de recogida de datos sobre población, bienes y producción en las civilizaciones china (aproximadamente 1000 años a. C.), sumeria y egipcia. Incluso en la Biblia, en el libro de Números aparecen referencias al recuento de los israelitas en edad de servicio militar. No olvidemos que precisamente fue un censo, según el Evangelio, lo que motivó el viaje de José y María a Belén. Los censos propiamente dichos eran ya una institución en el siglo IV a.C. en el imperio romano. Sin embargo, sólo muy recientemente la estadística ha adquirido la categoría de ciencia. En el siglo XVII surge la aritmética política, desde la escuela alemana de Conring. Posteriormente su discípulo Achenwall orienta su trabajo a la recogida y análisis de datos numéricos, con fines específicos y en base a los cuales se hacen estimaciones y conjeturas, es decir se observan ya los elementos básicos del método estadístico. La estadística no es una excepción y, al igual que ella, otras ramas de las matemáticas se han desarrollado como respuesta a problemas de índole diversa:
·         Muchos aspectos de la geometría responden en sus orígenes históricos, a la necesidad de resolver problemas de agricultura y de arquitectura.
·         Los diferentes sistemas de numeración evolucionan paralelamente a la necesidad de buscar notaciones que permitan agilizar los cálculos aritméticos.
·         La teoría de la probabilidad se desarrolla para resolver algunos de los problemas que plantean los juegos de azar.

Las matemáticas constituyen el armazón sobre el que se construyen los modelos científicos, toman parte en el proceso de modelización de la realidad, y en muchas ocasiones han servido como medio de validación de estos modelos. Por ejemplo, han sido cálculos matemáticos los que permitieron, mucho antes de que pudiesen ser observados, el descubrimiento de la existencia de los últimos planetas de nuestro sistema solar.
Sin embargo, la evolución de las matemáticas no sólo se ha producido por acumulación de conocimientos o de campos de aplicación. Los propios conceptos matemáticos han ido modificando su significado con el transcurso del tiempo, ampliándolo, precisándolo o revisándolo, adquiriendo relevancia o, por el contrario, siendo relegados a segundo plano.

Ejemplos
·         El cálculo de probabilidades se ha transformado notablemente, una vez que se incorporaron conceptos de la teoría de conjuntos en la axiomática propuesta por Kolmogorov. Este nuevo enfoque permitió aplicar el análisis matemático a la probabilidad, con el consiguiente avance de la teoría y sus aplicaciones en el último siglo.
·         El cálculo manual de logaritmos y funciones circulares (senos, cosenos, etc.) fue objeto de enseñanza durante muchos años y los escolares dedicaron muchas horas al aprendizaje de algoritmos relacionados con su uso. Hoy las calculadoras y ordenadores producen directamente los valores de estas funciones y el cálculo manual ha desaparecido. El mismo proceso parece seguir actualmente el cálculo de raíces cuadradas.

El mundo de la ciencia y tecnología
Las aplicaciones matemáticas tienen una fuerte presencia en nuestro entorno. Si queremos que el alumno valore su papel, es importante que los ejemplos y situaciones que mostramos en la clase hagan ver, de la forma más completa posible, el amplio campo de fenómenos que las matemáticas permiten organizar. El desarrollo de la tecnología ha venido a revolucionar la forma en la que se enseña matemáticas en la actualidad y la forma en la que se puede tener acceso a conocimientos sobre el área.  La operación de las computadoras tiene su fundamento en sistemas de cálculo y numeración.
Nuestro mundo biológico
Dentro del campo biológico, puede hacerse notar al alumno que muchas de las características heredadas en el nacimiento no se pueden prever de antemano: sexo, color de pelo, peso al nacer, etc. Algunos rasgos como la estatura, número de pulsaciones por minuto, recuento de hematíes, etc., dependen incluso del momento en que son medidas. La probabilidad permite describir estas características. En medicina se realizan estudios epidemiológicos de tipo estadístico. Es necesario cuantificar el estado de un paciente (temperatura, pulsaciones, etc.) y seguir su evolución, mediante tablas y gráficos, comparándola con los valores promedios en un sujeto sano. El modo en que se determina el recuento de glóbulos rojos a partir de una muestra de sangre es un ejemplo de situaciones basadas en el razonamiento proporcional, así como en la idea de muestreo.
Cuando se hacen predicciones sobre la evolución de la población mundial o sobre la posibilidad de extinción de las ballenas, se están usando modelos matemáticos de crecimiento de poblaciones, de igual forma que cuando se hacen estimaciones de la propagación de una cierta enfermedad o de la esperanza de vida de un individuo.
Las formas de la naturaleza nos ofrecen ejemplos de muchos conceptos geométricos, abstraídos con frecuencia de la observación de los mismos.
El crecimiento de los alumnos permite plantear actividades de medida y ayudar a los alumnos a diferenciar progresivamente las diferentes magnitudes y a estimar cantidades de las mismas: peso, longitud, etc.
El mundo físico
Además del contexto biológico del propio individuo, nos hallamos inmersos en un medio físico. Una necesidad de primer orden es la medida de magnitudes como la temperatura, la velocidad, etc. Por otra parte, las construcciones que nos rodean (edificios, carreteras, plazas, puentes) proporcionan la oportunidad de analizar formas geométricas; su desarrollo ha precisado de cálculos geométricos y estadísticos, uso de funciones y actividades de medición y estimación (longitudes, superficies, volúmenes, tiempos de transporte, de construcción, costes, etc.)

¿Qué mejor fuente de ejemplos sobre fenómenos aleatorios que los meteorológicos? La duración, intensidad, extensión de las lluvias, tormentas o granizos; las temperaturas máximas y mínimas, la intensidad y dirección del viento son variables aleatorias. También lo son las posibles consecuencias de estos fenómenos: el volumen de agua en un  pantano, la magnitud de daños de una riada o granizo son ejemplos en los que se presenta la ocasión del estudio de la estadística y probabilidad.
El mundo social
El hombre no vive aislado: vivimos en sociedad; la familia, la escuela, el trabajo, el ocio están llenos de situaciones matemáticas. Podemos cuantificar el número de hijos de la familia, la edad de los padres al contraer matrimonio, el tipo de trabajo, las creencias o aficiones de los miembros varían de una familia a otra, todo ello puede dar lugar a estudios numéricos o estadísticos.
Para desplazarnos de casa a la escuela, o para ir de vacaciones, dependemos del transporte público. Podemos estimar el tiempo o la distancia o el número de viajeros que usarán el autobús.
En nuestros ratos de ocio practicamos juegos de azar tales como quinielas o loterías.
Acudimos a encuentros deportivos cuyos resultados son inciertos y en los que tendremos que hacer cola para conseguir las entradas. Cuando hacemos una póliza de seguros no sabemos si la cobraremos o por el contrario perderemos el dinero pagado; cuando compramos acciones en bolsa estamos expuestos a la variación en las cotizaciones La estadística y probabilidad se revela como herramienta esencial en estos contextos.
El mundo político
El Gobierno, tanto a nivel local como nacional o de organismos internacionales, necesita tomar múltiples decisiones y para ello necesita información. Por este motivo la administración precisa de la elaboración de censos y encuestas diversas. Desde los resultados electorales hasta los censos de población hay muchas estadísticas cuyos resultados afectan las decisiones de gobierno.
Los índices de precios al consumo, las tasas de población activa, emigración -inmigración, estadísticas demográficas, producción de los distintos bienes, comercio, etc., de las que diariamente escuchamos sus valores en las noticias, proporcionan ejemplo de razones y proporciones.
El mundo económico
La contabilidad nacional y de las empresas, el control y previsión de procesos de producción de bienes y servicios de todo tipo no serían posibles sin el empleo de métodos y modelos matemáticos. En la compleja economía en la que vivimos son indispensables unos conocimientos mínimos de matemáticas financieras. Abrir una cuenta corriente, suscribir un plan de pensiones, obtener un préstamo hipotecario, etc. son ejemplos de operaciones que necesitan este tipo de matemáticas.

Matemáticas en la vida cotidiana. Cultura matemática
Uno de los fines de la educación es formar ciudadanos cultos, pero el concepto de cultura es cambiante y se amplía cada vez más en la sociedad moderna. Cada vez más se reconoce el papel cultural de las matemáticas y la educación matemática también tiene como fin proporcionar esta cultura. El objetivo principal no es convertir a los futuros ciudadanos en “matemáticos aficionados”, tampoco se trata de capacitarlos en cálculos complejos, puesto que los ordenadores hoy día resuelven este problema. Lo que se pretende es proporcionar una cultura con varios componentes interrelacionados:

a) Capacidad para interpretar y evaluar críticamente la información matemática y los argumentos apoyados en datos que las personas pueden encontrar en diversos contextos, incluyendo los medios de comunicación, o en su trabajo profesional.
b) Capacidad para discutir o comunicar información matemática, cuando sea relevante, y competencia para resolver los problemas matemáticos que encuentre en la vida diaria o en el trabajo profesional.

Cuestionario.
1. ¿Cuál es el tema de la lectura?
2. ¿Cuáles son los orígenes de la estadística?
3. ¿los conceptos matemáticos que usamos han cambiado a lo largo del tiempo?
4. Menciona por lo menos tres  ejemplos de aplicaciones de las matemáticas en cada una de las áreas: social, política, económica, física y biología.
5. a tu parecer ¿Cuál crees que sería el principal objetivo de tener una cultura matemática?
6. ¿Cómo te sentiste al realizar la lectura?
7. En general ¿qué opinión te merece el tema del texto?


No hay comentarios:

Publicar un comentario